On the Lower Bound of Spectrum of the Schrödinger's Operator for Some Multi-Particle Systems

Khalmukhamedov, O. R. ${ }^{1}$, Rakhimov, A. A. ${ }^{* 2}$, and Kuchkarov, E. ${ }^{3}$
${ }^{1}$ Department of Applied Mathematics, Tashkent Branch of Moscow State University
${ }^{2}$ Department of Science in Engineering, International Islamic University Malaysia
${ }^{3}$ Department of Mathematical Physics, National University of Uzbekistan
E-mail:abdumalik@iium.edu.my*

Abstract

For N - particle Schrödinger's operator with Column potential with central charge equal Z, it is well known estimation $N<2 Z+1$, obtained by Lieb E. In the present paper the estimation obtained in case when there is a different interaction between particles.

Keywords: Spectrum, Lower Bound, Schrödinger Operator, Multi-Particle System

1. Introduction

In the space $L_{2}\left(R^{3 N}\right)$ consider

$$
\begin{equation*}
H_{N}=-\Delta+W(x) \tag{1}
\end{equation*}
$$

an operator of interactions of arbitrary $N+1$ particles, where

$$
\begin{equation*}
W(x)=\sum_{k=0}^{N} \sum_{j<k} V_{j k}\left(x_{j}-x_{k}\right), \quad x_{j} \in R^{3} \tag{2}
\end{equation*}
$$

and $V_{j k}=V_{k j}$ when $j=0,1,2, \ldots, N, \quad k=0,1,2, \ldots, N, \Delta=\Delta_{1}+\Delta_{2}+\cdots+$ Δ_{N}, Δ_{j}-three dimensional Laplace operator, $x=\left(x_{1}, x_{2}, \ldots, x_{N}\right) \in R^{3 N}, ~ Đ$, $x_{j}=\left(x_{j}^{1}, x_{j}^{2}, x_{j}^{3}\right) \in R^{3}$. Let, $V_{k}\left(x_{k}\right)=V_{0 k}\left(x_{0}-x_{k}\right), k=1,2, \ldots, N$. Further put $x_{0}=0$.
Let

$$
\begin{equation*}
V(x)=\frac{b(|x|)}{|x|}, x \in R^{3} \tag{3}
\end{equation*}
$$

$b(t)$ - is non-negative and non-decreasing function such that $V(x)$ monotonically decreasing with increasing of $|x|$ and $b^{\prime \prime}(t)<0$.
Let

$$
\begin{equation*}
\alpha_{j}(x)=-\frac{V_{j}(x)}{V(x)} \geqslant 0 \tag{4}
\end{equation*}
$$

identically non-zero functions uniformly bounded with respect to $x \in R^{3}$, where $j=1,2, \ldots, N$. Moreover let

$$
\begin{equation*}
\beta_{j k}(x)=\frac{V_{j k}(x)}{V(x)} \geqslant 0 \tag{5}
\end{equation*}
$$

where $\beta_{j k}(x)$, also identically non-zero and uniformly bounded with respect to $x \in R^{3}$, where $j=1,2, \ldots, N, k=1,2, \ldots, N$

Then above mentioned operator cn be represented as

$$
\begin{equation*}
H_{N}=-\sum_{j=1}^{N}\left(\Delta_{j}+\alpha_{j}\left(x_{j}\right) V\left(x_{j}\right)\right)+\sum_{k=1}^{N} \sum_{j=1}^{k-1} \beta_{j k}\left(x_{j}-x_{k}\right) V\left(x_{j}-x_{k}\right) \tag{6}
\end{equation*}
$$

Let

$$
\sigma_{1}(\alpha)=\frac{1}{N}\left(\alpha_{1}\left(x_{1}\right)+\alpha_{2}\left(x_{2}\right)+\cdots+\alpha_{N}\left(x_{N}\right)\right.
$$

$$
\begin{gathered}
\sigma_{2}(k, \beta)=\frac{1}{2(N-1)} \sum_{j \neq k} \beta_{j k}\left(x_{j}-x_{k}\right), k=1,2, \ldots, N, \\
\sigma_{3}(\beta)=\frac{2}{N(N-1)} \sum_{k=1}^{N} \sum_{j=1}^{k-1} \beta_{j k}\left(x_{j}-x_{k}\right) .
\end{gathered}
$$

Let $E_{N}=E_{N}(Z)$ the least eigenvalue of H_{N}.

2. Main Results.

The following theorems are valid
Theorem 1. Let for the function $V_{j k}(x), x \in R^{3}$ in $j \neq k, j=0,1,2, \ldots \ldots, N$, $k=0,1,2, \ldots, N$ the following relations hold

$$
\lim _{r \rightarrow \infty}\left\{\sup _{x \in R^{3}} \frac{1}{r^{3}} \int_{|x-y| \leqslant r} V_{j k}(|y|)\right\} d y=0 .
$$

Then for any $N \geqslant 2$

$$
E_{N} \leqslant E_{N-1} .
$$

Theorem 2. Let there are $Z>0$ and $\gamma>0$, both are independent from N, such that

$$
\alpha_{k}\left(x_{k}\right) \leqslant Z, \quad \gamma \sigma_{2}(k, \beta) \geqslant 1, k=1, \ldots, N
$$

uniformly with respect $x_{i}, x_{k} \in R^{3}, i=1,2, \ldots N, k=1,2, \ldots N$.
Then there is a number $N_{\max }$ such that for all $N \geqslant N_{\max }$

$$
E_{N}=E_{N_{\max }} .
$$

Theorem 3. Let there are $Z>0$ and $\gamma>0$, independent from N, such that

$$
\sigma_{1}(\alpha) \leqslant Z, \quad \gamma \sigma_{3}(\beta) \geqslant 1,
$$

uniformly with respect to $x_{i}, x_{k} \in R^{3}, i=1, \ldots, N, k=1, \ldots, N$.
Then

$$
N_{\max }<2 \gamma Z+1 .
$$

3. Remark

In case of Coulomb's potential i.e. when $\alpha_{j}=Z, b \equiv 1, \beta_{j k}=1$, theorems 1 and 2 proved by Ruskai M.B. (Cycon et al., 1987, Ruskai, 1982a,b) and Sigal I.M.(Sigal, 1982, 1984). Theorem 3 in case of Coulomb's potential proved by Lieb E. (Lieb, 1984a,b,c). The case $\alpha_{j}=1, \beta_{j k}=1$ all these three theorems proved by Alimov Sh.A. (Alimov, 1992). In (Khalmukhamedov and Kuchkarov, 2003), Khalmukhamedov A.R. and Kuchkarov E.I. obtained these results for the operator

$$
H_{N}=-\sum_{j=1}^{N}\left(\Delta_{j}+Z \frac{b_{1}\left(\left|x_{j}\right|\right)}{\left|x_{j}\right|}\right)+\sum_{1 \leqslant k<j \leqslant N} \frac{b_{1}\left(x_{j}-x_{k}\right)}{\left|x_{j}-x_{k}\right|}
$$

and in this case Lieb's estimation has a form

$$
N_{\max }<\frac{2}{b_{0}} Z+1
$$

where $b_{0}=\inf _{t>0}\left(\frac{b_{1}(t)}{b_{2}(t)}\right)$.

4. Proof of the Main Results

Before proving Theorem 1 we prove some lemmas.
Lemma 1. There is a function $\omega_{r}(x)=\omega_{r}(|x|) \in C_{0}^{\infty}\left(R^{3}\right), r>0$, such that:

1) $\operatorname{supp} \omega_{r}(x) \subset\left\{x \in R^{3}:|x| \leqslant r+1\right\}, \omega_{r}(x)=C_{r} r^{-\frac{3}{2}}$ when $|x| \leqslant r-1$, $c_{r}=\sqrt{\frac{3}{4 \pi}}\left(1+O\left(\frac{1}{\sqrt{r}}\right)\right)$
when $r \rightarrow \infty$;
2) $\left\|\omega_{r}\right\|_{L_{2}\left(R^{3}\right)}=1$;
3) $\lim _{r \rightarrow \infty}\left\|\nabla \omega_{r}\right\|_{L_{2}\left(R^{3}\right)}=0$.

Proof of Lemma 1 Let

$$
\omega(t)=\left\{\begin{array}{cl}
c_{0} \exp \left(-\frac{1}{1-t^{2}}\right), & \text { when }|t|<1 \\
0 & \text { when }|t| \geq 1
\end{array}\right.
$$

where $c_{0}=\left(\int_{-\infty}^{\infty} \omega(t) d t\right)^{-1}$ is a normalizing constant. Consider a function of the form

$$
\omega_{R}(|x|)=c_{R} R^{-\frac{3}{2}} \int_{|x|}^{+\infty} \omega(t-R) d t
$$

where, c_{R} is a normalizing constant, which is determined from the condition $\left\|\omega_{R}^{2}(x)\right\|_{L_{2}\left(R^{3}\right)}=1$. It is easy to verify that $\lim _{R \rightarrow+\infty} c_{R}=\sqrt{\frac{3}{4 \pi}}$.

Let us prove that this function satisfies all the requirements of Lemma 1. In fact, let $|x| \leq R-1$. Then $t-R \geq|x|-R \geq-1$, hence $\omega_{R}(|x|)=c_{R} R^{-\frac{3}{2}}$. If $|x| \geq R+1$, then $t-R \geq|x|-R \geq 1$, therefore $\omega_{R}(|x|) \equiv 0$.

Next

$$
\left|\nabla \omega_{R}(|x|)\right|^{2}=\sum_{j=1}^{3}\left(\frac{\partial \omega_{R}(|x|)}{\partial x_{j}}\right)^{2}=c_{R}^{2} R^{-3} \omega^{2}(|x|-R)
$$

then if $R \rightarrow+\infty$,

$$
\left\|\nabla \omega_{R}(x)\right\|_{L_{2}\left(R^{3}\right)}^{2}=c_{R}^{2} R^{-3} \int_{R-1 \leq|x| \leq R+1} \omega^{2}(|x|-R) d x=O\left(R^{-1}\right)
$$

Lemma 1 is proved.
Lemma 2. Let the function $Q(x) \geq 0, x \in R^{3}$, satisfies the relations

$$
\lim _{r \rightarrow \infty}\left\{\sup _{x \in R^{3}} \frac{1}{r^{3}} \int_{|x-y| \leq r} Q(y) d y\right\}=0
$$

Then

$$
\lim _{r \rightarrow \infty}\left\{\sup _{x \in R^{3}} \frac{1}{r^{3}} \int_{|x-y| \leq r} Q(y) \omega_{r}^{2}(|y|) d y\right\}=0
$$

Lemma 2 follows directly from Lemma 1.

Proof of Theorem 1.

Let us prove the inequality $E_{N} \leqslant E_{N-1}$ for every $N \geqslant 2$.
Consider an arbitrary function $\varphi \in C_{0}^{\infty}\left(R^{3 N-3}\right)$ such that $\|\varphi\|_{L_{2}\left(R^{3 N-3}\right)}=$ 1. Let $\psi(x)=\varphi(\tilde{x}) \omega_{r}\left(x_{N}\right)$, where $x=\left(\tilde{x}, x_{N}\right) \in R^{3 N-3} \times R^{3}$. Obviously $\psi \in C_{0}^{\infty}\left(R^{3 N}\right)$, as well ass $\|\psi\|_{L_{2}\left(R^{3 N}\right)}=1 ;$ Moreover $\left(H_{N} \psi, \psi\right) \geqslant E_{N}$.

We have

$$
\begin{gathered}
\left(H_{N} \psi, \psi\right)=\left(H_{N-1} \varphi, \varphi\right)\left(\omega_{r}, \omega_{r}\right)+ \\
+\left(-\Delta_{N} \omega_{r}, \omega_{r}\right)-\left(\alpha_{N}\left(x_{N}\right) V\left(x_{N}\right) \omega_{r}, \omega_{r}\right)+ \\
+\left(\sum_{k=1}^{N} \sum_{j=1}^{k-1}\left(\beta_{j k}\left(x_{j}-x_{k}\right) V\left(x_{j}-x_{k}\right) \omega_{r}, \omega_{r}\right) \varphi(\tilde{x}), \varphi(\tilde{x})\right)
\end{gathered}
$$

where

$$
\begin{gathered}
H_{N-1}=-\sum_{j=1}^{N-1}\left(\Delta_{j}+\alpha_{j}\left(x_{j}\right) V\left(x_{j}\right)\right)+ \\
+\sum_{k=1}^{N-1} \sum_{j=1}^{k-1} \beta_{j k}\left(x_{j}-x_{k}\right) V\left(x_{j}-x_{k}\right)
\end{gathered}
$$

- an operator for $N-1$ particles.

Obviously

$$
\left(H_{N-1} \varphi, \varphi\right)\left(\omega_{r}, \omega_{r}\right)=\left(H_{N-1} \varphi, \varphi\right) \geqslant E_{N-1} .
$$

Applying Lemma 2 obtain

$$
\begin{gathered}
\left(-\Delta_{N} \omega_{r}, \omega_{r}\right)-\left(\alpha_{N}\left(x_{N}\right) V\left(x_{N}\right) \omega_{r}, \omega_{r}\right)+ \\
+\left(\sum_{k=1}^{N} \sum_{j=1}^{k-1}\left(\beta_{j k}\left(x_{j}-x_{k}\right) V\left(x_{j}-x_{k}\right) \omega_{r}, \omega_{r}\right) \varphi(\tilde{x}), \varphi(\tilde{x})\right)
\end{gathered}
$$

$$
=o(1)
$$

since $\left(-\Delta_{N} \omega_{r}, \omega_{r}\right)=\left\|\nabla \omega_{r}(x)\right\|^{2}=o(1)$,

$$
\begin{gathered}
\left(\alpha_{N}\left(x_{N}\right) V\left(x_{N}\right) \omega_{r}, \omega_{r}\right)= \\
=\int_{R^{3}} \alpha_{N}\left(x_{N}\right) V\left(x_{N}\right) \omega_{r}^{2}\left(x_{N}\right) d x_{N}=o(1) \\
\int_{R^{3 N-1}}|\varphi(\tilde{x})|^{2}\left(\int_{R^{3}} \beta_{j k}\left(x_{j}-x_{k}\right) V\left(x_{j}-x_{k}\right) \omega_{r}^{2}\left(x_{N}\right) d x_{N}\right) d \tilde{x} \\
=o(1) .
\end{gathered}
$$

Consequently, in $r \rightarrow \infty$ we have

$$
\left(H_{N} \psi, \psi\right)=\left(H_{N-1} \varphi, \varphi\right)+o(1)
$$

Thus

$$
E_{N}=\inf _{\|\psi\|=1}\left(H_{N} \psi, \psi\right) \leqslant\left(H_{N-1} \varphi, \varphi\right)+o(1)
$$

Hence

$$
E_{N} \leqslant \inf _{\|\varphi\|=1}\left(H_{N} \varphi, \varphi\right)=E_{N-1}
$$

Theorem 1 is proved.

Proof of Theorem 2.

Note that if the inequality $E_{N} \leq E_{N-1}$ holds for some number N, then the Theorem 2 follows directly from Theorem 1 . To prove this inequality for some number N we divide the space $R^{3 N}$ as follows. Fix a number $\rho>0 \mathrm{Đ}$, $\delta, \quad 0<\delta<\frac{1}{2}$, and let $d(x)=\max _{1 \leqslant j \leqslant N}\left|x_{j}\right|$.

Let us introduce the following sets

$$
A_{0}=\left\{x \in R^{3 N}:\left|x_{j}\right|<\rho, \mathrm{j}=1,2, \ldots, \mathrm{~N}\right\},
$$

Khalmukhamedov, O. R., Rakhimov, A.A. and Kuchkarov, E.

$$
\begin{aligned}
A_{i}=\left\{x \in R^{3 N}:\right. & \left.\left|x_{i}\right|>(1-\delta) d(x), d(x)>\frac{1}{2} \delta\right\}, \\
& i=1,2, \ldots, N .
\end{aligned}
$$

Let $\left\{J_{i}\right\}_{i=1}^{N}$ - a partition of unity with supp $J_{i} \subset A_{i}$ such that

$$
\begin{gathered}
\sum_{i=0}^{N}\left|\nabla J_{i}(x)\right|^{2} \leqslant \frac{A N^{\frac{1}{2}}}{\rho^{2}}, x \in A_{0}, \\
\sum_{i=0}^{N}\left|\nabla J_{i}(x)\right|^{2} \leqslant \frac{A N^{\frac{1}{2}}}{d(x) \rho}, x \in A_{j}, j \geqslant 1,
\end{gathered}
$$

where A - a constant. Existence of such a partition proved in (Cycon et al., 1987). With such a partition an operator H_{N} can be represented in the following way:

$$
H_{N}=J_{0}\left(H_{N}-L(x)\right) J_{0}+\sum_{i=1}^{N} J_{i}\left(H_{N}-L(x)\right) J_{i},
$$

where

$$
L(x)=\sum_{i=0}^{N}\left|\nabla J_{i}(x)\right|^{2}
$$

called the localization error. This representation is known as IMS-localization formula (Cycon et al., 1987). Let us now estimate the first term.

$$
\begin{gathered}
J_{0}\left(H_{N}-L\right) J_{0} \geqslant \\
\geqslant J_{0}\left(\sum_{i=1}^{N}\left(-\Delta_{i}+\alpha_{j}\left(x_{j}\right) V\left(x_{j}\right)\right)\right) J_{0}+ \\
+J_{0}\left(\sum_{k=1}^{N} \sum_{j=1}^{k-1} \beta_{j k}\left(x_{j}-x_{k}\right) V\left(x_{j}-x_{k}\right)-A \frac{N^{\frac{1}{2}}}{\rho^{2}}\right) J_{0} .
\end{gathered}
$$

Since $\alpha_{j}\left(x_{j}\right) \leqslant Z$ and for any $\varepsilon>0$ there is $\delta(\varepsilon)>0$ for an arbitrary function $\varphi \in C_{0}^{\infty}\left(A_{0}\right)$:

$$
\left(V\left(x_{j}\right) \varphi, \varphi\right) \leqslant \varepsilon(-\Delta \varphi, \varphi)+\delta(\varepsilon)(\varphi, \varphi)
$$

On the Lower Bound of Spectrum

then there exist a constant $c>0$ such that

$$
\begin{gathered}
J_{0}\left(-\sum_{j=1}^{N}\left(\Delta_{j}+\alpha\left(x_{j}\right) V\left(x_{j}\right)\right)\right) J_{0}= \\
=J_{0}\left(-\sum_{j=1}^{N} \Delta_{j}-\sum_{j=1}^{N} \alpha\left(x_{j}\right) V\left(x_{j}\right)\right) J_{0} \geqslant c N Z J_{0}^{2} .
\end{gathered}
$$

Moreover, $V\left(x_{j}-x_{k}\right) \geqslant V(2 \rho), x_{j} \in A_{0}$ hence

$$
\begin{gathered}
\sum_{k=1}^{N} \sum_{j=1}^{k-1} \beta_{j k}\left(x_{j}-x_{k}\right) V\left(x_{j}-x_{k}\right) \geqslant \\
\geqslant V(2 \rho) \sum_{k=1}^{N} \sum_{j=1}^{k-1} \beta_{j k}\left(x_{j}-x_{k}\right)= \\
=V(2 \rho)(N-1) \sum_{k=1}^{N} \sum_{j=1}^{k-1} \sigma_{2}(k, \beta)>\frac{V(2 \rho)}{\nu} N(N-1) .
\end{gathered}
$$

Then, for large N

$$
\begin{gathered}
J_{0}\left(H_{N}-L(x)\right) J_{0} \geqslant \\
\geqslant J_{0}\left(-c Z N+\frac{V(2 \rho)}{\nu} N(N-1)-\frac{A}{\rho^{2}} N^{\frac{1}{2}}\right) J_{0} \geqslant 0 . \\
J_{0}\left(H_{N}-L\right) J_{0} \geqslant \\
\geqslant J_{0}\left(\left(-N c(Z)+\frac{N(N-1)}{2} V_{2}(2 \rho)-\frac{A N^{\frac{1}{2}}}{\rho^{2}}\right) J_{0} \geqslant 0 .\right.
\end{gathered}
$$

Denoted by $H_{N-1}^{(i)}$, where $i \neq 0$, an operator

$$
H_{N-1}^{(i)}=-\sum_{\substack{j=1 \\ j \neq i}}^{N}\left(\Delta_{j}+\alpha_{j}\left(x_{j}\right) V\left(x_{j}\right)\right)+
$$

Khalmukhamedov, O. R., Rakhimov, A.A. and Kuchkarov, E.

$$
+\sum_{\substack{k=1 \\ k, j \neq i}}^{N} \sum_{j=1}^{k-1} \beta_{j k}\left(x_{j}-x_{k}\right) V\left(x_{j}-x_{k}\right)
$$

For any $x_{i} \in A_{i}$

$$
\begin{gathered}
J_{i}\left(H_{N}-L(x)\right) J_{i} \geq \\
\geq J_{i}\left(H_{N-1}^{(i)}-\Delta_{i}-\alpha_{i}\left(x_{i}\right) V\left(x_{i}\right)\right) J_{i}+ \\
+J_{i}\left(\sum_{\substack{j=1 \\
j \neq i}}^{N} \beta_{j i}\left(x_{j}-x_{i}\right) V\left(x_{j}-x_{i}\right)-\frac{A}{d(x) \rho} N^{\frac{1}{2}}\right) J_{i}
\end{gathered}
$$

Clearly

$$
\begin{gathered}
V\left(x_{i}-x_{j}\right) \geqslant \frac{b(2 d(x))}{2 d(x)} \\
V\left(x_{i}\right) \geqslant \frac{b(d(x))}{d(x)}
\end{gathered}
$$

Then

$$
\begin{gathered}
J_{i}\left(H_{N}-L(x)\right) J_{i} \geq \\
\geq J_{i}\left(E_{N-1}+\frac{b\left(\left|x_{i}\right|\right)}{\left|x_{i}\right|}\left(-\alpha_{i}\left(x_{i}\right)\right) J_{i}+\right. \\
\left.J_{i}\left(\frac{b(2 d(x))}{2 d(x)} \frac{\left|x_{i}\right|}{b\left(\left|x_{i}\right|\right)} \sum_{\substack{j=1 \\
j \neq i}}^{N} \beta_{j i}\left(x_{j}-x_{i}\right)-\frac{A}{d(x) \rho} N^{\frac{1}{2}} \frac{\left|x_{i}\right|}{b\left(\left|x_{i}\right|\right)}\right)\right) J_{i}
\end{gathered}
$$

Since $b(x)$ a non-decreasing function, for $x \in A_{i}$

$$
\frac{b(2 d(x))}{2 d(x)} \cdot \frac{\left|x_{i}\right|}{b\left(\left|x_{i}\right|\right)}=\frac{b(2 d(x))}{b\left(\left|x_{i}\right|\right)} \cdot \frac{\left|x_{i}\right|}{2 d(x)} \geqslant \frac{1-\delta}{2}
$$

and

$$
\sum_{j=1, j \neq i} \beta_{j i}\left(x_{j}-x_{i}\right)=2(N-1) \sigma_{2}(i, \beta) \geqslant \frac{2}{\nu}(N-1)
$$

On the Lower Bound of Spectrum

$$
\frac{\left|x_{i}\right|}{d(x) b\left(\left|x_{i}\right|\right)} \leqslant \frac{1}{b\left(\frac{1-\delta}{2} \rho\right)} .
$$

then

$$
\begin{gathered}
J_{i}\left(H_{N}-L(x)\right) J_{i} \geqslant \\
\geqslant J_{i}\left(E_{N-1}+\frac{b_{1}\left(\left|x_{i}\right|\right)}{\left|x_{i}\right|}\left(-Z+(N-1) \frac{1-\delta}{\nu}-\frac{A N^{\frac{1}{2}}}{b\left(\frac{1-\delta}{2} \rho\right) \rho}\right) J_{i} .\right.
\end{gathered}
$$

Thus, for large N, the inequality

$$
E_{N} \leqslant E_{N-1}
$$

holds. Theorem 2 is proved.

Proof of Theorem 3.

Assume that $E_{N}<E_{N-1}$ and let H_{N-1}^{k} the Hamiltonian of the system without a particle x_{k}, i.e., for any fixed $k(1 \leqslant k \leqslant N)$

$$
H_{N-1}^{(i)}-\Delta_{i}-\alpha\left(x_{j}\right) V\left(x_{j}\right)+\sum_{j \neq k} \beta_{j k}\left(x_{j}-x_{k}\right) V\left(x_{j}-x_{k}\right)
$$

Now let $H_{N} f=E_{N} f$ and $(f, f)=1$. Then

$$
\begin{gathered}
0=\left(V^{-1}\left(x_{k}\right) f,\left(H_{N}-E_{N}\right) f\right)= \\
=\left(V^{-1}\left(x_{k}\right) f,\left(H_{N-1}^{k}-E_{N}\right) f\right)-\left(V^{-1}\left(x_{k}\right) f, \Delta_{k} f\right)-\left(\alpha_{k}\left(x_{k}\right) f, f\right)+ \\
+\left(V^{-1}\left(x_{k}\right) f, \sum_{j \neq k} \beta_{j k}\left(x_{j}-x_{k}\right) V\left(x_{j}-x_{k}\right) f\right) .
\end{gathered}
$$

Now taking into account the inequalities $H_{N-1} \geq E_{N-1}>E_{N}$ and applying Lemma 2 of (Cycon et al., 1987), we obtain

$$
\left(V^{-1}\left(x_{k}\right) f, \sum_{j \neq k} \beta_{j k}\left(x_{j}-x_{k}\right) V\left(x_{j}-x_{k}\right) f\right)<\left(\alpha_{k}\left(x_{k}\right) f, f\right) .
$$

We sum these inequalities for $k=1,2, \ldots, N$:

$$
\begin{gathered}
\sum_{k=1}^{N}\left(V^{-1}\left(x_{k}\right) f\right. \\
\left., \sum_{j \neq k} \beta_{j k}\left(x_{j}-x_{k}\right) V\left(x_{j}-x_{k}\right) f\right) \\
<\left(\sum_{k=1}^{N} \alpha_{k}\left(x_{k}\right) f, f\right)
\end{gathered}
$$

or equivalently

$$
\sum_{j=1}^{N}\left(V^{-1}\left(x_{j}\right) f, \sum_{k \neq j} \beta_{k j}\left(x_{k}-x_{j}\right) V\left(x_{k}-x_{j}\right) f\right)<\left(\sum_{k=1}^{N} \alpha_{k}\left(x_{k}\right) f, f\right) .
$$

Summing the last two inequalities and considering that

$$
\beta_{k j}\left(x_{k}-x_{j}\right) V\left(x_{k}-x_{j}\right)=\beta_{j k}\left(x_{j}-x_{k}\right) V\left(x_{j}-x_{k}\right)
$$

obtain

$$
\begin{aligned}
\sum_{k=1}^{N} \sum_{j \neq k}\left(\left(V^{-1}\left(x_{k}\right)\right.\right. & \left.\left.+V^{-1}\left(x_{j}\right)\right) V\left(x_{j}-x_{k}\right) \beta_{j k}\left(x_{j}-x_{k}\right) f, f\right) \\
& <2\left(\sum_{k=1}^{N} \alpha_{k}\left(x_{k}\right) f, f\right)
\end{aligned}
$$

Hence, by the corollary to Lemma 3 in [1], we obtain

$$
\sum_{k=1}^{N} \sum_{j \neq k}\left(\beta_{j k}\left(x_{j}-x_{k}\right) f, f\right)<2\left(\sum_{k=1}^{N} \alpha_{k}\left(x_{k}\right) f, f\right)
$$

or

$$
\left(\sum_{k=1}^{N} \sum_{j<k} \beta_{j k}\left(x_{j}-x_{k}\right) f, f\right)<\left(\sum_{k=1}^{N} \alpha_{k}\left(x_{k}\right) f, f\right)
$$

and because of (1) we have

$$
N-1<2 \nu Z
$$

Theorem 3 is proved.

Acknowledgments

Ongoing research on the topics of the paper supported by MOHE grant FRGS 141420383.

References

Alimov, S. (1992). On the spectrum of the schrodinger operator for some many-particle systems. J.Phys A:Math.Gen., pages 615-616.

Cycon, H. L., Froese, R. G., Kirsch, W., and Simon., B. (1987). SCHRODINGER OPERATORS with Applications to Quantum Mechanics and Global Geometry. Springer-Verlag, Berlin, Heidelberg.

Khalmukhamedov, A. R. and Kuchkarov, E. I. (2003). On the stability of the number of particles associated with the schredinger operator of a manyparticle system. Proceedings of the International Conference "Modern problems of mathematical physics and information technology., 1:183-185.

Lieb, E. (1984a). Asymptotic neutrality of large z ions. Phys.Rev.Lett., 52:994.
Lieb, E. (1984b). Atoms and molecular ionization. Phys.Rev.Lett., 52:315.
Lieb, E. (1984c). Bound on the maximum negative ionization of atoms and molecules. Phys. Rev. A., 29:3018-3028.

Ruskai, M. B. (1982a). Absence of discrete spectrum in highly negative ions. Commun.Math.Phys., 82:457-469.

Khalmukhamedov, O. R., Rakhimov, A.A. and Kuchkarov, E.

Ruskai, M. B. (1982b). Absence of discrete spectrum in highly negative ions, ii. Commun. Math.Phys., 85:325-327.

Sigal, I. M. (1982). Geometric methods in the quantum many-body problem. non-existences of very negative ions. Commun. Math.Phys., 85:309-324.

Sigal, I. M. (1984). How many electrons can a nucleus bind? Ann. Phys., 157:307-320.

